Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Coronaviruses ; 2(12) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2281660

ABSTRACT

Background: The recent outbreak of the COVID-19 pandemic has raised a global health concern due to the unavailability of any vaccines or drugs. The repurposing of traditional herbs with broad-spectrum anti-viral activity can be explored to control or prevent a pandemic. Objective(s): The 3-chymotrypsin-like main protease (3CLpro), also referred to as the "Achilles' heel" of the coronaviruses (CoVs), is highly conserved among CoVs and is a potential drug target. 3CLpro is essential for the virus' life cycle. The objective of the study was to screen and identify broad--spectrum natural phytoconstituents against the conserved active site and substrate-binding site of 3CLpro of HCoVs. Method(s): Herein, we applied the computational strategy based on molecular docking to identify potential phytoconstituents for the non-covalent inhibition of the main protease 3CLpro from four different CoVs, namely, SARS-CoV-2, SARS-CoV, HCoV-HKU1, and HCoV-229E. Result(s): Our study shows that natural phytoconstituents in Triphala (a blend of Emblica officinalis fruit, Terminalia bellerica fruit, and Terminalia chebula fruit), namely chebulagic acid, chebulinic acid, and elagic acid, exhibited the highest binding affinity and lowest dissociation constants (Ki), against the conserved 3CLpro main protease of SARSCoV-2, SARS-CoV, HCoV-HKU1, and HCoV-229E. Besides, phytoconstituents of other herbs like Withania somnifera, Glycyrrhiza glabra, Hyssopus officinalis, Camellia sinensis, Prunella vulgaris, and Ocimum sanctum also showed good binding affinity and lower Ki against the active site of 3CLpro. The top-ranking phyto-constituents' binding interactions clearly showed strong and stable interactions with amino acid residues in the catalytic dyad (CYS-HIS) and substrate-binding pocket of the 3CLpro main proteases. Conclusion(s): This study provides a valuable scaffold for repurposing traditional herbs with anti--CoV activity to combat SARS-CoV-2 and other HCoVs until the discovery of new therapies.Copyright © 2021 Bentham Science Publishers.

2.
Front Chem ; 10: 948553, 2022.
Article in English | MEDLINE | ID: covidwho-2109731

ABSTRACT

Considering the significant impact of the recent COVID-19 outbreak, development of broad-spectrum antivirals is a high priority goal to prevent future global pandemics. Antiviral development processes generally emphasize targeting a specific protein from a particular virus. However, some antiviral agents developed for specific viral protein targets may exhibit broad spectrum antiviral activity, or at least provide useful lead molecules for broad spectrum drug development. There is significant potential for repurposing a wide range of existing viral protease inhibitors to inhibit the SARS-CoV2 3C-like protease (3CLpro). If effective even as relatively weak inhibitors of 3CLpro, these molecules can provide a diverse and novel set of scaffolds for new drug discovery campaigns. In this study, we compared the sequence- and structure-based similarity of SARS-CoV2 3CLpro with proteases from other viruses, and identified 22 proteases with similar active-site structures. This structural similarity, characterized by secondary-structure topology diagrams, is evolutionarily divergent within taxonomically related viruses, but appears to result from evolutionary convergence of protease enzymes between virus families. Inhibitors of these proteases that are structurally similar to the SARS-CoV2 3CLpro protease were identified and assessed as potential inhibitors of SARS-CoV2 3CLpro protease by virtual docking. Several of these molecules have docking scores that are significantly better than known SARS-CoV2 3CLpro inhibitors, suggesting that these molecules are also potential inhibitors of the SARS-CoV2 3CLpro protease. Some have been previously reported to inhibit SARS-CoV2 3CLpro. The results also suggest that established inhibitors of SARS-CoV2 3CLpro may be considered as potential inhibitors of other viral 3C-like proteases.

3.
Comput Biol Chem ; 98: 107656, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1708325

ABSTRACT

Molecular docking results of two training sets containing 866 and 8,696 compounds were used to train three different machine learning (ML) approaches. Neural network approaches according to Keras and TensorFlow libraries and the gradient boosted decision trees approach of XGBoost were used with DScribe's Smooth Overlap of Atomic Positions molecular descriptors. In addition, neural networks using the SchNetPack library and descriptors were used. The ML performance was tested on three different sets, including compounds for future organic synthesis. The final evaluation of the ML predicted docking scores was based on the ZINC in vivo set, from which 1,200 compounds were randomly selected with respect to their size. The results obtained showed a consistent ML prediction capability of docking scores, and even though compounds with more than 60 atoms were found slightly overestimated they remain valid for a subsequent evaluation of their drug repurposing suitability.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/therapeutic use , Humans , Machine Learning , Molecular Docking Simulation , Protease Inhibitors
4.
Front Pharmacol ; 12: 669642, 2021.
Article in English | MEDLINE | ID: covidwho-1295679

ABSTRACT

The coronavirus disease 2019 (COVID-19) has spread widely around the world and has seriously affected the human health of tens of millions of people. In view of lacking anti-virus drugs target to SARS-CoV-2, there is an urgent need to develop effective new drugs. In this study, we reported our discovery of SARS-CoV-2 Mpro inhibitors. We selected 15 natural compounds, including 7 flavonoids, 3 coumarins, 2 terpenoids, one henolic, one aldehyde and one steroid compound for molecular docking and enzymatic screening. Myricetin were identified to have potent inhibit activity with IC50 3.684 ± 0.076 µM in the enzyme assay. The binding pose of Myricetin with SARS-CoV-2 Mpro was identified using molecular docking method. In the binding pocket of SARS-CoV-2 Mpro, the chromone ring of Myricetin interacts with His41 through π-π stacking, and the 3'-, 4'- and 7-hydroxyl of Myricetin interact with Phe140, Glu166and Asp187 through hydrogen bonds. Significantly, our results showed that Myricetin has potent effect on bleomycin-induced pulmonary inflammation by inhibiting the infiltration of inflammatory cells and the secretion of inflammatory cytokines IL-6, IL-1α, TNF-α and IFN-γ. Overall, Myricetin may be a potential drug for anti-virus and symptomatic treatment of COVID-19.

5.
Mini Rev Med Chem ; 21(20): 3191-3202, 2021.
Article in English | MEDLINE | ID: covidwho-1105938

ABSTRACT

Corona Virus Disease-2019 (COVID-19), caused by the SARS CoV-2 virus, has been announced as a pandemic by the World Health Organization. COVID-19 has affected people globally, infecting more than 39.8 million people and claiming up to 1.11 million lives, yet there is no effective treatment strategy to cure this disease. As vaccine development is a time-consuming process, currently, efforts are being made to develop alternative plans for the timely and effective management of this disease. Drug repurposing always fascinated researchers and can be utilized as the most acceptable alternative to develop the therapeutics for COVID-19 using the pre-approved drugs. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has shown resemblance with distinctive enzyme targets, such as 3CLpro/Mpro, RdRp, Cathepsin L, and TMPRSS2 present in SARS CoV and MERS CoV. Therefore, the drugs that have shown efficacy in these viruses can also be used for the treatment of COVID-19. This review focuses on why repurposing could provide a better alternative in COVID- 19 treatment. The similarity in the structure and progression of infection of SARS CoV and MERS viruses offers a direction and validation to evaluate the drugs approved for SARS and MERS against COVID-19. It has been indicated that multiple therapeutic options that demonstrate efficacy against SARS CoV 2 are available to mitigate the potential emergence of COVID-19 infection.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Coronavirus Infections/drug therapy , Drug Repositioning , Severe Acute Respiratory Syndrome/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/enzymology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL